Maximum Entropy and Bayesian Data Analysis: Entropic Priors
نویسندگان
چکیده
The problem of assigning probability distributions which objectively reflect the prior information available about experiments is one of the major stumbling blocks in the use of Bayesian methods of data analysis. In this paper the method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is inspired and guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting “entropic prior” is formally identical with the Einstein fluctuation formula. For repeatable experiments, however, the expected value of the entropy of the likelihood turns out to be relevant information that must be included in the analysis. The important case of a Gaussian likelihood is treated in detail.
منابع مشابه
Bayesian Inference Featuring Entropic Priors
The subject of this work is the parametric inference problem, i.e. how to infer from data on the parameters of the data likelihood of a random process whose parametric form is known a priori. The assumption that Bayes’ theorem has to be used to add new data samples reduces the problem to the question of how to specify a prior before having seen any data. For this subproblem three theorems are s...
متن کاملMaximum Entropy, Fluctuations and Priors
The method of maximum entropy (ME) is extended to address the following problem: Once one accepts that the ME distribution is to be preferred over all others, the question is to what extent are distributions with lower entropy supposed to be ruled out. Two applications are given. The first is to the theory of thermodynamic fluctuations. The formulation is exact, covariant under changes of coord...
متن کاملSource Localization by Entropic Inference and Backward Renormalization Group Priors
A systematic method of transferring information from coarser to finer resolution based on renormalization group (RG) transformations is introduced. It permits building informative priors in finer scales from posteriors in coarser scales since, under some conditions, RG transformations in the space of hyperparameters can be inverted. These priors are updated using renormalized data into posterio...
متن کاملConsistency of Sequence Classification with Entropic Priors
Entropic priors, recently revisited within the context of theoretical physics, were originally introduced for image processing and for general statistical inference. Entropic priors seem to represent a very promising approach to “objective” prior determination when such information is not available. The attention has been mostly limited to continuous parameter spaces and our focus in this work ...
متن کاملEntropic Priors *
The method of Maximum (relative) Entropy (ME) is used to translate the information contained in the known form of the likelihood into a prior distribution for Bayesian inference. The argument is guided by intuition gained from the successful use of ME methods in statistical mechanics. For experiments that cannot be repeated the resulting “entropic prior” is formally identical with the Einstein ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003